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Abstract. The phase diagram of the spin-one Ising model with a random crystal field is 
investigated by the use of the effective-field theory with correlations. The important dif- 
ferences from the results obtained by the standard mean-field theory are indicated. The 
differences are very similar to those found in the dilution problem of magnetic systems. 

1. Introduction 

In a series of studies, several authors (Benyoussef eta1 1987, Carneiro eta/ 1989, Boccara 
eta1 1989) have discussed the phase diagrams of the spin-one king model with a random 
crystal field within the framework of the mean-field approximation. On the other hand, 
Kaneyoshi (1986,1988) has also studied the same problems by the use of the effective- 
field theory with correlations (EFT), which is superior to the standard mean-field theory 
(MFA). The Hamiltonian of the system with a random crystal field is then given by 

H = -1 s:s; + D,(Sf)2 (1) 
( I . ! )  I 

where S: = i- 1,0,  a n d l  > 0. The first sum runs over all pairs of nearest neighbours and 
D, is a random crystal field distributed according to the law 

P(D1) = PS(D1 - D )  + (1 - P ) d ( D l )  

P ( D , )  = & [ S ( D ,  - A(1 + d) )  + 6 ( D ,  - A(1 - d) ) ]  

( 2 )  

(3) 

or 

where 0 s p  s 1 and 0 < d < 1. 
In this paper, we investigate, via the EFT, the influence of crystal-field disorder on 

the phase transition in the spin-one Ising system. We find that many previous conclusions 
based on mean-field theories may not provide any insight into the nature of the phase 
transition of the system. The situation is very similar to that of diluted alloys, where the 
MFA predicts that the transition temperature will remain finite until zero concentration 
is reached, but where sophisticated theories that are better than the MFA predict the 
transition temperature to reduce to zero below a critical concentration. 

In order to clarify the defects of the MFA as applied to these systems, we study in 
section 2 the transition temperature for the special case of a system in which the 
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probability distribution function P(Di)  is given by (2) and also D = 00. In fact, our 
conclusion from the EFT predicts the existence of a critical value of p ,  namely p*,  at 
which the transition temperature T, reduces to zero, although the mean-field theories 
give a finite transition temperature k R  T,/zJ = 3(1 - p)  even in the regionp" < p < 1 ( z  
is the coordination number). In section 3, the transition temperature of the system with 
the probability distribution function (3) and d = 1 is also investigated by the use of the 
EFT. In contrast with the MFA results, we find re-entrant phenomena due to the crystal- 
field disorder, when the transition temperature is plotted as a function of A ,  and the 
transition temperature reduces to zero for large values of A in accordance with the 
prediction of section 2. 

2. Comparison with the MFA and EFT 

According to the mean-field theory of a spin-one king model with a random crystal 
field Di described by ( 2 )  (Benyoussef et a1 1987), the magnetization m in the vicinity of 
the second-order transition line is given by 

m = iim + bm3 + Cm5 + . . . (4) 

with 

P 

1 

where t = kBT/zJ and 6 = D/zJ.  

of the MFA results. For D = m, the parameters 5, b and Freduce to 
Let us at first discuss the special case of D = = (6  = a), in order to clarify the defects 

a = 2(1 - p)/3t 6 = -(1 - p)/9t3 < 0 C =  13(1 - p)/540t5 > 0. (8) 

Thus, the transition is of second-order and the transition temperature TYFA for D = 00 

is determined from ii = 1: 

k B  TYFA/2J = 3(1 - p). (9) 

On the other hand, Kaneyoshi (1986) has discussed some general expressions for 
determining the second-order phase transition line and the tricritical point within the 
framework of the EFT. In the vicinity of the second-order transition line, the mag- 
netization m can be also expanded in the form (4). According to the theory, the second- 
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order transition line for the honeycomb lattice with z = 3 and D = 
from the relation = 1: 

can be obtained 

1 = 3(1 - p)[q2K, + 2q(l - q)K2 + (1 - q ) 2 K , ]  (10) 
with 

K1 = cosh2(JV) sinh(JV)Fo(x)I,=o = $(F0(3J) + Fo(J)) 
(11) 

K2 = iFo(21) 

F o ( x )  = 2 sinh(px)/(2 cosh(px) + 1) 

K3 = FdJ )  

where V = a/dx is the differential operator and the function F&) is defined by 

(12) 
with p = l/kBT. Here, the parameter q = ( ( S : ) ’ )  for the system with z = 3 and D = 
can be determined from 

4 = (1 -p)[q3Q, + 3q2(l  - q)Q2 + 3q(l  - q)2Q3 + (1 - qI3Q41 (13) 
with 

Q ,  = C O S ~ ~ ( J V ) G ~ ( ~ ) I ~ = ~  = $(Go(3J) + 3C0(J)) 

Q2 = 4(Go(u) + Go(0)) Q3 = Go(J) Q4 = Go(0) (14) 

(15) 

where the function GO(x) is defined by 

G O ( x )  = 2 cosh(px)/(2 cosh(px) + 1). 

The functions Fo(x) and Go(x)  can be easily obtained from the functions F(x)  and G(x) 
in Kaneyoshi (1986) by using (2) and taking the limit D = =. 

In figure l(a) the numerical result of the coupled equations (10) and (13) is plotted 
as a function of p ,  as well as the MFA result (9) for z = 3. The transition temperature T, 
at p = 0 for the system with D = x is given by 

kB T,/J = 1.5191 a t p  = 0 (16) 
which is equivalent to that of the honeycomb ( z  = 3) lattice with p = 1 and D = 0 
(Benayad eta1 1985, Kaneyoshi 1986). In contrast with the MFA result, the result from 
the EFT decreases monotonically from (16) with increasing p and reduces to zero at the 
critical valuep* = 0.484 (1 - p* = 0.5160). The behaviour is very similar to that usually 
found in the dilution problem of magnetic atoms; in the dilution problem, the standard 
MFA gives the transition temperature TFFA as 

kB TPFA/zJ = j c  for D = 0 (17) 
where c is the concentration of magnetic atoms. On the other hand, a sophisticated 
theory superior to the MFA normally predicts the existence of a critical concentration c * ,  
as shown schematically in figure l(b) (see Stinchcombe 1983). Notice that the critical 
concentration c* of the spin-4 Ising honeycomb lattice obtained by the EFT for the site 
dilution is given by c* = 0.5575 (Li and Yang 1985). Thus, the similarity between the 
two cases (the dilution problem and the random crystal field with (2) and D = m) may 
indicate that the results obtained from the MFA (Benyoussef et a1 1987, Boccara et a1 
1989) do not provide any insight into the nature of possible (second-order or first-order) 
transition lines, especially for a value of p larger than the critical value p* (except 
p = 1). 
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Figure 1. (a )  The transition temperature T,versus 
p in an Ising honeycomb ( z  = 3) lattice with a 
random crystal field described by ( 2 )  for the case 
where D = =. MFA indicates the result (9) from 
mean-field theory. EFT indicates the solution of 
coupled equations (10) and (13). The critical value 
p *  is given by p *  = 0.484. (b)  A schematic phase 
diagram of a site-diluted k ing  ferromagnet. MFA 

indicates the mean-field result (17) and c* is the 
critical concentration. 

Figure 2. The phase diagram in the ( T ,  D )  plane 
of the spin-one Ising system with crystal-field dis- 
order ('p = 0.5 and d = 1) given by (3). 

3. Re-entrant phenomena 

Within the framework of the MFA, Boccara et af (1989) recently investigated the phase 
diagrams of the spin-one Ising system with a random crystal field, whose probability 
distribution function is given by (3). However, the probability distribution function (3) 
corresponds to the special case of (2), namely withp = 0.5 in (2);p = 0.5 is smaller than 
the critical value 1 - p *  = 0.5160 for the system with z = 3 discussed in the previous 
section, and hence the transition temperature for the system with z = 3 and d = 1 should 
reduce to zero for large values of A (or D ) ,  although their MFA results predict a finite 
transition temnerature for a large value of A and a first-order transition line senaratina 

In order to ciarify the above discussions, let us here-study the influence of crystal- 
field disorder on the ( T ,  A) phase diagram for the honeycomb lattice (2 = 3) with a given 
concentrationp = 0.5 and a fixed value of d ( d  = 1) by the use of the EFT; the transition 
temperature of the system withp = 0.5 and d = 1 can be easily obtained from the coupled 
equations ( 5 )  and (9) in Kaneyoshi (1986) by using (2) and puttingp = 0.5 and D = 2A, 
as in the previous section. The numerical result is shown in figure 2. 

In figure 2, the transition temperature T, at A = 0 (D = 0) is given by 

k B  T,/J = 1.5191 for A = 0 (18) 
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which is also equivalent to the previous result for the pure (p = 1) system at D = 0 
(Benayad et a1 1985, Kaneyoshi 1986). On increasing the value of D, the transition 
temperature decreases, and reduces to zero at the value D = 2A = 1 SJ. A characteristic 
behaviour due to the crystal-field disorder is found in the figure; the result clearly shows 
the re-entrant phenomena in the region 1.50 S D/J S 1.586. This is emphasized in the 
inset of the figure. As discussed in previous work (Benayad et a1 1985, Kaneyoshi 1986), 
the pure system with z = 3 and p = 1 may exhibit tricritical behaviour. The tricritical 
point can be determined from using the condition 5 = 1 and 6 = 0 in the expansion (4). 
In figure 2, however, there is no tricriticalpoint satisfying the condition a=  1 and 
6 = 0. As predicted in section 2, the transition temperature of the system with p = 0.5 
and d = 1 reduces to zero for a large value of D. These results are completely different 
from those obtained from the MFA (Boccara er a1 1989). 

4. Conclusions 

In this work we have investigated the effects of crystal-field disorder on the transition 
temperature (phase diagram) in the spin-one Ising system within the framework of the 
EFT. The results obtained are very different from those of the MFA. As discussed in 
section 2, however, the similarity between the two systems (the dilution of magnetic 
atoms and the present system with D = C O )  may indicate that the results obtained from 
MFA do not provide any reliable information about the phase diagram especially for a 
value of p in the region p* < p < 1 where the transition temperature goes to zero. In 
section 3, we have also found that re-entrant phenomena due to the crystal-field disorder 
are possible. 

Finally, it may be worth adding the following physical arguments. In section 2, N p  
spins among the total number N of spins are in the Sf = 0 state, because D = x ,  and 
N(l  - p )  spins behave as the usual Ising spins with D = 0. Therefore, the spins in the 
Sf = 0 state simply correspond to the introduction Np of non-magnetic atoms in the 
system, since they are inactive as regards producing ferromagnetic ordering. Thus, as 
the number of spins in the S: = 0 state increases, the ferromagnetic transition tem- 
perature should decrease, and finally reduce to zero at the percolation threshold, just 
like it does in the standard dilution problem. Thus, the present problem should not be 
confused with the random anisotropy model where the directions of anisotropy at the 
various sites are randomly distributed (Chudnovsky et a1 1986, Fischer 1987, Kaneyoshi 
1984). 
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